
PHYSICAL REVIEW E JUNE 1998VOLUME 57, NUMBER 6
Nonstationary stochastic resonance
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It is by now established that, remarkably, the addition of noise to a nonlinear system may sometimes
facilitate, rather than hamper, the detection of weak signals. This phenomenon, usually referred to as stochastic
resonance, was originally associated with strictly periodic signals, but it was eventually shown to occur for
stationary aperiodic signals as well. However, in several situations of practical interest, the signal can be
markedly nonstationary. We demonstrate that the phenomenon of stochastic resonance extends to nonstation-
ary signals as well, and thus could be relevant to a wider class of biological and electronic applications.
Building on both nondynamic and aperiodic stochastic resonance, our scheme is based on a multilevel trigger
mechanism, which could be realized as a parallel network of differentiated threshold sensors. We find that
optimal detection is reached for a number of thresholds of order 10 and that little is gained by going much
beyond that number. We raise the question of whether this is related to the fact that evolution has favored some
fixed numbers of precisely this order of magnitude in certain aspects of sensory perception.
@S1063-651X~98!09806-7#

PACS number~s!: 87.22.Jb, 05.40.1j
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Random fluctuations are ubiquitous in physical syste
be it electronic circuits, sensory neuron networks, or a
number of a large set of situations of great physical inter
This is what made the discovery of stochastic resonance@1–
3# potentially a milestone in the field of signal detectio
Since the early 1980s, an increasing number of authors h
identified or suspected the occurrence of stochastic r
nance in a wide variety of contexts@4#, from paleo-
climatology@1,5# to biological sensory systems@6–8# to non-
linear electronic circuits@9,10#.

In the course of research on how a newly identified eff
of galactic gravitational waves@11# could be detected, it wa
pointed out that stochastic resonance could be relevan
that context@12#, since the effect in question involved~elec-
tromagnetic! noise in a fundamental way. It was subse
quently found that applying two simple numerical thresho
triggers to the data could allow the extraction of the grav
tional signal from the noise@13#. In fact, this was but a
specific realization of more general work on stochastic re
nance than recently published@14–16#. A particularly inter-
esting finding had just been made that systems as simple
nondynamic trigger mechanism could display all the de
able features of stochastic resonance. The implication
that stochastic resonance, although depending crucially
the nonlinearity of the dynamics involved, may not necess
ily depend on thedetailsof that nonlinearity. Thus, stochas
tic resonance could be a more widespread phenomenon
previously thought.

More recently still, stochastic resonance was dem
strated for aperiodic signals@17–24#. More specifically, it
was shown that stochastic resonance can arise for a s
that is a weak arbitrary fluctuation around some cons
value, in other words, a weak stationary signal. This was
important first step towards showing that stochastic re
nance is actually relevant to real-life signals, which rar
come in exact sine waves.
571063-651X/98/57~6!/6996~6!/$15.00
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Here, we attempt to push these findings further by sho
ing that, through stochastic resonance, very simple~biologi-
cal or artificial! devices can also detect subthreshold sign
that are not stationary. Many realistic situations call for t
detection of signals of just such a nature. In fact, it is n
always easy in nonlinear electronic circuits to stabilize a s
nal enough that it can be considered as rigorously station
while in biological applications the signal that is sought
seldom truly stationary. We are essentially interested in
case where the aperiodic signals already considered in
literature@17–24# have an additional nonstationary structur
i.e., a nontrivial overall time profile. It is this low-frequenc
aspect that we focus on, and we do not attempt to reprod
the known properties of~higher-frequency! aperiodic sto-
chastic resonance.

Our detector is a multilevel trigger system. This could
realized, for example, as a numberN of single threshold
sensors mounted in parallel. Stochastic resonance in s
cooperative systems has been shown to exhibit very att
tive features@20,25,26#, such as not requiring a finely tune
amount of noise to accomplish the detection@20#. Our sys-
tem here is the equivalent of a network of paralleldifferen-
tiated sensors: We consider a trigger mechanism charac
ized by a numberN of thresholds of different heights. A
was noted in the literature@20#, such a threshold differentia
tion can do little to improve the detection ofstationarysig-
nals. We now show that such multilevel trigger systems c
improve the detection of signals that are markedly nons
tionary. We first sketch an analytical account of roughly ho
one expects the system to behave, and then present th
sults of the actual numerical simulation in Figs. 1–4. W
have consigned part of the discussion of the simulations
the captions of these figures.

Consider first the usualsingle-threshold trigger system
@14–16#. Each time the input exceeds the threshold valueB1,
the system generates a pulse of heightH and widthW. The
6996 © 1998 The American Physical Society
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57 6997NONSTATIONARY STOCHASTIC RESONANCE
response is thus a pulse trainP(t), where t indicates the
time. If the input is Gaussian white noise with rmss and
high-frequency cutofff 0, then the response averages to

^P&5HW
f 0

A3
exp~2B1

2/2s2!. ~1!

Now, a subthreshold signalS(t), varying on time scales
much larger than 1/f 0, is added to the input. The rate o
threshold crossing will now vary in time, and the resulti
responseR(t) can be approximated by the smeared respo
R̃(t) ~average response over time intervals that are lon
than the noise correlation time and shorter than the sign
characteristic time! can be approximated by@16#

R̃~ t !5HW
f 0

A3
exp$2@B12S~ t !#2/2s2%. ~2!

Moreover, in realistic situations~especially in biological
ones!, there is an upper limit to theeffectivepulse firing rate:
A neuron, for example, can potentially fire a maximum
about 500 times per second.~Note, however, that as far as i
interaction with the external environment is concerned,
neuron generally has the equivalent of a moving window
about 0.1 sec, so that it can react to changes in the exte
stimulus only at an effective rate of 10 times a seco
Hence, the correct way to model the problem is highly c
dependent. We are mostly interested here in the detectio
a signal that is buried inexternal noise, i.e., in situations
where the stimulus itself is noisy. This is the situation th
arises when trying to identify the presence of a determini
signature within a stochastic input. One must thus distingu
between internal and external noise in a more reali
model.!

There is then an effective upper limit on the rate at wh
the system can respond to the input, which we model
allowing each trigger to fire a maximum of about 1000 tim
during its exposure to a 1-sec-long signal. When the in
starts crossing that trigger’s threshold at a rate faster t
1000 Hz, the threshold starts firing at its maximal rate, c
tributing a constant value to the total output. The firing rat
upper limit is typically much smaller than the frequency c
off f 0 of the noise. Multiplying that limit byHW, one ob-
tains an upper ceilingRupper on the value of the respons
function. This sudden flattening ofRr(t), the more realistic
response function, can be modeled algebraically in differ
ways, depending on the internal dynamics of the particu
system considered. However, the effect of this plateau
Rr(t) that we are interested in here can be captured by
following simple model:

Rr~ t !5min$Rupper,R~ t !%. ~3!

We want to study the correlation of this output functio
Rr(t) with the injected signalS(t), which should determine
whether the latter can be detected by the trigger system.
follow the literature@17,18# in using the zero-lag correlatio
coefficient, with the modification that our signal does n
average to zero@Fig. 1~a!#. In our numerical simulations
~Figs. 1–4!, we of course correlate directly with the ra
~pulsewise! responseRr(t), not with its smeared version
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Rr(t). But the smearing approximation is sufficient for ca
turing analytically the main new features brought about
nonstationarity. Note also that in several applications, es
cially in biological ones, it is often the gross time profiles
the nonstationary signal and of the response that are relev
i.e., their smeared versions. Thus, we define

C5
^@Rr~ t !2^Rr~ t !&#@S~ t !2^S~ t !&#&

^@Rr~ t !2^Rr~ t !&#2&1/2^@S~ t !2^S~ t !&#2&1/2
, ~4!

and, to gain some insight into the behavior of this correlat
coefficient, we briefly consider the behavior of i
‘‘smeared’’ counterpart

C̃5
^@R̃r~ t !2^R̃r~ t !&#@S~ t !2^S~ t !&#&

^@R̃r~ t !2^R̃r~ t !&#2&1/2^@S~ t !2^S~ t !&#2&1/2
. ~5!

If the total integration time isDt, we shall compare the
slope of the time profiles against the factor~see Fig. 1!

a[
B1

Dt
, ~6!

which is the slope of the diagonal across the area undern
the thresholdB1 in Figs. 1~a! and 1~b!. For example, a
roughly linear signal, which, when smeared, has a slopx
that is much smaller thana, can be considered as virtuall
stationary. In that particular case, by injecting the rig
amount of noise to the system, it is possible to make the t
input ~signal plus noise! hover just about the threshold fo
the duration of the integration. The time features of t
threshold-crossing rate will then partially reflect those of t
signal, and the latter could be detected along the lines
~stationary! aperiodic stochastic resonance@17–24#.

A rather different situation arises if the slopex is of the
order ofa, i.e., if the signal is markedly nonstationary. Co
sider then the simplest nonstationary case, that of a signa
smeared value of which grows almost linearly with tim
e.g., S(t)5xt1y, wherex and y are quasiconstants. If we
also want the signal to start fromS(t50)50 and still remain
subthreshold at the end of integration time (t5Dt), we can
choosey50 and we needx to be somewhat smaller tha
~though still of the same order as! the nonstationarity factor
a. Note finally that a more general nonstationary time pro
could be qualitatively well approximated by a succession
linear sections such as the one above.

If some noise is now added to this signal, say, with an r
s;B1/3, then the total input is first well below the thresho
B1 and then well above it, with, somewhere in between
brief critical time when the total input is just about th
threshold, as in the stationary case. The output is hence
essentially zero. Then it quickly grows, over the critical tim
and reaches a saturation value where it stabilizes for the
mainder of the integration.@See Fig. 2~a!.# This saturation
can be roughly traced analytically in the behavior of Eqs.~2!
and ~3!, upon substituting forS(t) the linear formxt: If we
define the normalized time

t[t/Dt, ~7!

which grows from 0 to 1 over the integration time, we fin
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6998 57REDOUANE FAKIR
Rr~t!5minS Rupper,HW
f 0

A3

3expH 2B1
2

2s2 F12
x2

a2
tS 2

a

x
2t D G J D . ~8!

Because the signal is below the threshold, we havet,a/x in
Eq. ~7!. On the other hand, we are considering the stro
nonstationary case, and soa/x;1. In addition, we have, by
definition, 0,t,1. Equation~7! then implies the following
behavior of the system, which is confirmed by direct nume
cal simulation in Fig. 2. Consider first the case whereRupper
is arbitrarily high. Then Eq.~7! implies thatRr(t) grows
almost linearly until it approaches its maximum (;HW f0)
at t51, and hence the correlation with the input signal
quite high. This has the implication that the single-thresh
systems used so far in~stationary! aperiodic stochastic reso
nance@17–24# have also the potential to detect nonstation
signals under certain circumstances, namely, when the p
firing rate can be extremely fast@28#.

However, in the more generic case whereRupper!HW f0,
the realistic responseRr(t) is not so well correlated to the
signal, as it is a function that flattens quickly when the to
input crosses above the threshold. This is where multi
differentiated thresholds can substantially improve the de
tion. Let us then mount, in parallel with the first, some ad
tional trigger systems, all identical to the first except for th
progressively higher thresholds~Fig. 1!: B1,B2,•••

,BN .
The second threshold will then saturate at a higher va

of t and its output, when added to the output from the fi
threshold, will resemble a two-step function. With theN
thresholds in parallel, one obtains anN-step total response
functionRr(t). As N increases from order 1 to order 10, th
Rr(t) profile rapidly approaches a roughly linear shape, a
one expects the correlation coefficient of Eq.~4! to improve
notably. However, a further increase inN towards very large
values can be expected to bring about only a marginal
provement in the correlation, and this is in fact what is fou
numerically~Figs. 2 and 3!.

As a short preview of our numerical simulations, we fi
note that we used a signal that increases almost mono
cally with time ~Fig. 1!. Again, more arbitrary nonstationar
profiles can often be divided into such quasimonotonic s
tions. Also, we purposely did not add higher-frequen
structure to the signal because~1! we wanted to isolate the
features brought about by nonstationarity,~2! stochastic
resonance has already been successfully demonstrate
~stationary! aperiodic high-frequency signals@17–24#, and
~3! the signal that a system~especially a biological one! at-
tempts to detect in the nonstationary case is often a ro
time profile, and higher-frequency components are then
little relevance.

In nonstationary situations where both the overall tim
profile and the higher-frequency details of the signal are i
portant, one can first try to detect that rough~low-frequency!
time profile as described here, and then filter out the l
frequencies and treat the residual signal~a stationaryhigh-
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frequency signal! with aperiodic stochastic resonance tec
niques@17–24#.

Finally, as might be expected from previous nondynam
cal @14–16# and aperiodic@17–24# stochastic resonanc
studies, our differentiated multithreshold system, injec
with nonstationary aperiodic signals, clearly displays s
chastic resonance as well~Fig. 4!, although it is its potential
for the detectionof subthreshold signals that is of prim
importance to us here.

Describing now the simulations in more detail, we tu
first to Fig. 1~a!, which shows theN-level trigger system
~here N55) consisting of a barrierB1 and N21 higher
thresholds equally spaced betweenB1 and a highest thresh
old BN , chosen here to be 3 timesB1. Other ways of distrib-
uting the differentiated thresholds are of course possible,
most do not lead to qualitatively different results. The sign
is clearly nonstationary, and yet it remains subthreshold,
undetectable in principle, throughout the integration.~The
time has been normalized so that the integration runs fr
t50 to t51.!

In Fig. 1~b!, the deterministic input of Fig. 1~a! is re-
placed by a random looking input, obtained by adding a la
amount of noise to the previous subthreshold signal. T
noise here is a low-pass filtered, zero-mean Gaussian w
noise. The input now clearly exceeds the barrierB1 and a
few more thresholds. When any of the thresholds is
ceeded, the system fires a pulse of standard~but otherwise
arbitrary! heightH and~narrow! width W. At any given time
t, the responseR(t) is the sum of the outputs from all th
thresholds exceeded at that timet. I.e., if Bj is the highest
threshold exceeded att, thenR(t) is a pulse of widthW and
height j 3H.

FIG. 1. ~a! TheN-level trigger system~hereN55) consists of a
barrierB1 andN21 higher thresholds equally spaced betweenB1

and a highest thresholdBN , chosen here to be three timesB1. ~b!
The deterministic input of~a! is replaced by a random looking
input, obtained by adding a large amount of noise to the previ
subthreshold signal.
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57 6999NONSTATIONARY STOCHASTIC RESONANCE
Figure 2~a! shows the subthreshold input signal~thin
dashed curve! of Fig. 1~a! and the responseR(t) of the
trigger system.@Both are rescaled here and in Figs. 2~b! and

FIG. 2. ~a! The subthreshold input signal of Fig. 1~a! and the
responseR(t) of the trigger system, both rescaled here and in~b!
and~c! below, for easier visual comparison. When only one thre
old ~that is,B1) is activated, the response is roughly a step functi
~b! When N, the number of thresholds, is greater than 1~hereN
510), the response takes the aspect of a multistep function@again
rescaled here as in~a!# that follows roughly the nonstationary pro
file of the signal.~c! When the number of thresholds becomes la
~here,N5100), the steps and the stochastic broken lines bec
comparable in length, resulting in a scattered response functio
2~c!, for easier visual comparison.# When only one threshold
~that is,B1) is activated, the response is roughly a step fu
tion: For small values oft, most of the points in Fig. 1~b! are
belowB1 and hence produce a zero response, while for la
values oft, most of the points are aboveB1 and produce a
response equal to 13HW ~scaled here to 1.! One can see
that this one-step response function is only marginally c
related to the underlying signal, which translates into a l
value of the correlation coefficient forN51 in Fig. 3.

From Fig. 2~b! one can see that whenN, the number of
thresholds, is greater than 1@N510 in Fig. 2~b!#, and each of
the exceeded thresholds~here, there are four! contributes a
different step function to the response. Hence, the latter ta
the aspect of a multistep function@again rescaled here as i
Fig. 2~a!# that follows roughly the nonstationary profile o
the signal. There is a clear improvement of the correlat
between the response and the signal, confirming our ea
heuristic argument which used the smeared approxima

R̃(t) to the responseR(t).
Because the quasistep functions due to the individ

thresholds are partially stochastic, they also contribute so
broken lines to the total response, as can be seen in Figs.~a!
and 2~b!. When, as in Fig. 2~c!, the number of thresholds
becomes large@N5100 in Fig. 2~c!#, the ~now very short!
steps and the stochastic broken lines become comparab
length, resulting in a scattered response function. As a c
sequence, the correlation between signal and response i
much stronger than in the caseN;10, and hence the leveling
off of the correlation coefficient as a function ofN in Fig. 3.

Figure 3~a! shows the correlation coefficient of Eq.~2!,
which is the value of the normalized correlation functio
~between the response and the signal! at zero lag. The in-
crease of the correlation with the number of thresholds lev
off at N;10, as was foreseen in the above discussion of F
2. ~The first three values ofN produce the same correlatio
because, for these small values, the space between thres
is large enough that onlyB1 is exceeded.! Thus, a number of
order of magnitude 10 of differentiated, individual trigger
mounted in parallel~summed outputs!, is singled out for the
optimal detection of a nonstationary signal.

Figure 3~b! confirms that the main feature of Fig. 3~a!,
i.e., the plateau of the correlation coefficient as a function
the numberN of thresholds, is robust in the large-N limit. In
both Figs. 3~a! and 3~b!, the calculations were performe
using a noise with rmss equal to half the height of the firs
barrierB1.

Finally, Fig. 4 shows the correlation coefficientC of Eq.
~4! as a function ofs, the rms of the noise, divided by th
lowest thresholdB1. The system clearly displays stochas
resonance. When there is more than one threshold (N.1),
the decrease ofC becomes slightly sharper whens exceeds
a value of order 1. This is a consequence of having a fi
highest threshold, namely,B1123B1 ~see Fig. 1!: When the
noise is large enough that its tip starts exceeding the hig
threshold ~which occurs whens;B1), the whole system
starts behaving more like a one-threshold system and he
the sharper decrease inC ~compare with theN51 curve.!
Note that forN of order 10 or larger, all curves are near
identical to theN51000 curve shown in Fig. 4. So, althoug
there is a clear broadening of the stochastic resonance cu
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7000 57REDOUANE FAKIR
~and hence less fine-tuning of the noise is necessary to d
the weak signal! for large values ofN, this system is not as
free of fine-tuning as the~nondifferentiated! multithreshold
system described in the~stationary! aperiodic stochastic
resonance literature@20,25,26# referred to earlier in the text

In all, our study suggests that stochastic resonance m
be exploited for the detection of even strongly nonstation
subthreshold signals. We find that a differentiated multip
threshold system might, in such cases, improve on the
formance of single-threshold systems. But this is by
means a universal conclusion: we find numerically
amount of improvement to be strongly case dependent~i.e.,
depending on the shape of the signal, the noise charact
tics, etc.!. The results reported here are for cases where
multithreshold scheme presents a clear advantage. A t
ough investigation of the comparative performance of diff
entiated multithreshold systems throughout parameter s
is underway@27#. Also, the capacity ofmodified single-
threshold systems to detect realistic nonstationary signals
also been investigated recently@28#.

One example of a differentiated multiple-threshold syst
that might function similarly to our theoretical system is t
auditory sensory system in mammals. In this system, e

FIG. 3. ~a! The correlation coefficient of Eq.~2!, which is the
value of the normalized correlation function~between the respons
and the signal! at zero lag. The increase of the correlation with t
number of thresholds levels off atN;10, as was foreseen in th
text. Thus, a number of order of magnitude 10 of differentiat
individual triggers, mounted in parallel is singled out for the op
mal detection of a nonstationary signal.~b! The result of~a! above;
i.e., the plateau of the correlation coefficient as a function of
numberN of thresholds, is robust in the large-N limit.
ect
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primary afferent neuron~from the spiral ganglion! has its
lowest threshold to a particular frequency of sound, called
‘‘characteristic frequency.’’ Its threshold is increasing
higher for sound frequencies farther from the characteri
frequency. When the system is stimulated by a weak p
tone of a given frequency, only neurons with a characteri
frequency near the stimulating frequency, and thus hav
low thresholds for those sounds, will fire. As the tone
creases in amplitude, the first-firing neurons will quick
saturate but other neurons, whose thresholds for the sti
lating frequency are higher because their characteristic
quencies are farther from it, will begin to fire as their thres
olds are exceeded. In this way, the number of neurons fi
will track the intensity of the pure tone. If these neuro
converged upon an integrator neuron whose firing depen
directly on the firing of several spiral ganglion neurons w
different characteristic frequencies, the integrator would
proportionately to the signal amplitude. This system wou
give a similar response for a subthreshold signal that w
amplified above the thresholds of the auditory receptors
environmental or internal noise, i.e., in the stochastic re
nance situation. Such circuits in the auditory system h
been argued to be responsible for the primary coding of
ditory signal intensity@29# and for the integration of intensity
information from very brief auditory signals@30#.

Our simulations suggested that only a relatively sm
number of cooperative trigger mechanisms~of order 10 in
our study! might be necessary to achieve near-optimal det
tion of subthreshold signals, at least nonstationary ones.
result is reminiscent of the fact that some key component
certain biological systems consist of a fixed number of
ceptors mounted in cooperative neural networks similar
our differentiated multithreshold system. For example, un
optimal conditions a minimum of six photons must ea
stimulate a different rod in the retina of the eye, the sign
from the six rods being integrated in the response of a sin
retinal ganglion cell@31#. This is not a stochastic resonanc
situation, since the rods are roughly identical near-ideal
tectors responding to single photons, and Poisson noise f
the source only degrades that function. However, it is int
esting that evolution has developed such a sparse netw
that can be so exquisitely sensitive to environmental sign

FIG. 4. The correlation coefficientC of Eq. ~4! as a function of
s, the rms of the noise, in units of the lowest thresholdB1. The
system clearly displays stochastic resonance.~See the text for more
on these specific profiles.!
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57 7001NONSTATIONARY STOCHASTIC RESONANCE
Perhaps there is a more general principle of diminishing
turns operating that keeps such cooperative networks s
even though they are of diverse function. We speculate
this principle might be important in the functioning of st
chastic resonance in some biological systems and that
lution may have exploited it to enhance the detection o
wide class of fitness-relevant environmental signals, in p
ticular nonstationary signals as described here.

Clearly, however, much more detailed studies of biolo
cally ~or electronically! plausible multiple-component, sto
tur
-
all
at

o-
a
r-

-

chastic resonance systems, injected with a variety of real
signals, must be conducted before such an evolutionary
of stochastic resonance is confirmed.
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