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Nonstationary stochastic resonance
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It is by now established that, remarkably, the addition of noise to a nonlinear system may sometimes
facilitate, rather than hamper, the detection of weak signals. This phenomenon, usually referred to as stochastic
resonance, was originally associated with strictly periodic signals, but it was eventually shown to occur for
stationary aperiodic signals as well. However, in several situations of practical interest, the signal can be
markedly nonstationary. We demonstrate that the phenomenon of stochastic resonance extends to nonstation-
ary signals as well, and thus could be relevant to a wider class of biological and electronic applications.
Building on both nondynamic and aperiodic stochastic resonance, our scheme is based on a multilevel trigger
mechanism, which could be realized as a parallel network of differentiated threshold sensors. We find that
optimal detection is reached for a humber of thresholds of order 10 and that little is gained by going much
beyond that number. We raise the question of whether this is related to the fact that evolution has favored some
fixed numbers of precisely this order of magnitude in certain aspects of sensory perception.
[S1063-651%98)09806-1

PACS numbgs): 87.22.Jb, 05.4(]

Random fluctuations are ubiquitous in physical systems, Here, we attempt to push these findings further by show-
be it electronic circuits, sensory neuron networks, or anying that, through stochastic resonance, very sintpielogi-
number of a large set of situations of great physical interestcal or artificia) devices can also detect subthreshold signals
This is what made the discovery of stochastic resonghee that are not stationary. Many realistic situations call for the
3] potentially a milestone in the field of signal detection. detection of signals of just such a nature. In fact, it is not
Since the early 1980s, an increasing number of authors hawaways easy in nonlinear electronic circuits to stabilize a sig-
identified or suspected the occurrence of stochastic resdyal enough that it can be considered as rigorously stationary,
nance in a wide variety of contextf4], from paleo- while in biological applications the signal that is sought is
climatology[1,5] to biological sensory systeri6—8] to non-  seldom truly stationary. We are essentially interested in the
linear electronic circuit$9,10]. case where the aperiodic signals already considered in the

In the course of research on how a newly identified effecliterature[17—24 have an additional nonstationary structure,
of galactic gravitational wavegd 1] could be detected, it was i.e., a nontrivial overall time profile. It is this low-frequency
pointed out that stochastic resonance could be relevant iaspect that we focus on, and we do not attempt to reproduce
that contex{12], since the effect in question involvédlec- the known properties ofhigher-frequency aperiodic sto-
tromagneti¢ noise in a fundamental way. It was subse- chastic resonance.
quently found that applying two simple numerical threshold Our detector is a multilevel trigger system. This could be
triggers to the data could allow the extraction of the gravita+ealized, for example, as a numbhr of single threshold
tional signal from the nois¢13]. In fact, this was but a sensors mounted in parallel. Stochastic resonance in such
specific realization of more general work on stochastic resocooperative systems has been shown to exhibit very attrac-
nance than recently publish¢ti4—16. A particularly inter-  tive featureq420,25,2§, such as not requiring a finely tuned
esting finding had just been made that systems as simple asamount of noise to accomplish the detect[@@]. Our sys-
nondynamic trigger mechanism could display all the desirtem here is the equivalent of a network of paratldferen-
able features of stochastic resonance. The implication walated sensors: We consider a trigger mechanism character-
that stochastic resonance, although depending crucially oized by a numbeN of thresholds of different heights. As
the nonlinearity of the dynamics involved, may not necessarwas noted in the literatur20], such a threshold differentia-
ily depend on thaletails of that nonlinearity. Thus, stochas- tion can do little to improve the detection efationarysig-
tic resonance could be a more widespread phenomenon thaials. We now show that such multilevel trigger systems can
previously thought. improve the detection of signals that are markedly nonsta-

More recently still, stochastic resonance was demontionary. We first sketch an analytical account of roughly how
strated for aperiodic signalsl7—24. More specifically, it one expects the system to behave, and then present the re-
was shown that stochastic resonance can arise for a signellllts of the actual numerical simulation in Figs. 1-4. We
that is a weak arbitrary fluctuation around some constanhave consigned part of the discussion of the simulations to
value, in other words, a weak stationary signal. This was athe captions of these figures.
important first step towards showing that stochastic reso- Consider first the usuadinglethreshold trigger system
nance is actually relevant to real-life signals, which rarely[14—16. Each time the input exceeds the threshold v@ye
come in exact sine waves. the system generates a pulse of heighand widthW. The
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response is thus a pulse traif(t), wheret indicates the R,(t). But the smearing approximation is sufficient for cap-

time. If the input is Gaussian white noise with rrasand  turing analytically the main new features brought about by

high-frequency cutoff ,, then the response averages to nonstationarity. Note also that in several applications, espe-
cially in biological ones, it is often the gross time profiles of

fo 2im 2 the nonstationary signal and of the response that are relevant,
(P)= Hwﬁexq— Bi/207). (D je., their smeared versions. Thus, we define
Now, a subthreshold signa(t), varying on time scales c ([Rr(t) = (R (YI[S(t) = (S(1))]) @
much larger than 1§, is added to the input. The rate of ([R(D)— (R (1))IHYA[S(t) —(S(1))]2) 2’

threshold crossing will now vary in time, and the resulting
responsdR(t) can be approximated by the smeared responsénd, to gain some insight into the behavior of this correlation
R(t) (average response over time intervals that are longefoefficient, we briefly consider the behavior of its
than the noise correlation time and shorter than the signal’sSmeared” counterpart
characteristic timecan be approximated HyL6] ~ ~

e ([R() = (R (D) ][S(H) —(S(1))])

f_OeXp[—[Bl—S(t)]Z/ZGZ}. 2) (R(1) = (R(D)YDVA[S(t) — (S(1))]HVZ

v If the total integration time is\t, we shall compare the
Moreover, in realistic situationéespecially in biological —slope of the time profiles against the factsee Fig. 1
ones, there is an upper limit to theffectivepulse firing rate:
A neuron, for example, can potentially fire a maximum of By 6)

(5)
R(t)=HW

. - aE _l
about 500 times per secon@ote, however, that as far as its At

interaction with the external environment is concerned, the
neuron generally has the equivalent of a moving window ofwhich is the slope of the diagonal across the area underneath
about 0.1 sec, so that it can react to changes in the externile thresholdB; in Figs. Xa and Xb). For example, a
stimulus only at an effective rate of 10 times a secondroughly linear signal, which, when smeared, has a sbope
Hence, the correct way to model the problem is highly caséhat is much smaller thaa, can be considered as virtually
dependent. We are mostly interested here in the detection &fationary. In that particular case, by injecting the right
a signal that is buried irexternal noisgi.e., in situations amount of noise to the system, it is possible to make the total
where the stimulus itself is noisy. This is the situation thatinput (signal plus noisghover just about the threshold for
arises when trying to identify the presence of a deterministi¢he duration of the integration. The time features of the
signature within a stochastic input. One must thus distinguisithreshold-crossing rate will then partially reflect those of the
between internal and external noise in a more realisti¢ignal, and the latter could be detected along the lines of
model) (stationary aperiodic stochastic resonander—24.

There is then an effective upper limit on the rate at which A rather different situation arises if the slopeis of the
the system can respond to the input, which we model byrder ofa, i.e., if the signal is markedly nonstationary. Con-
allowing each trigger to fire a maximum of about 1000 timessider then the simplest nonstationary case, that of a signal the
during its exposure to a 1-sec-long signal. When the inpusmeared value of which grows almost linearly with time,
starts crossing that trigger’'s threshold at a rate faster tha@.g., S(t)=xt+y, wherex andy are quasiconstants. If we
1000 Hz, the threshold starts firing at its maximal rate, conalso want the signal to start fro8{t=0)=0 and still remain
tributing a constant value to the total output. The firing rate’ssubthreshold at the end of integration tinte=(At), we can
upper limit is typically much smaller than the frequency cut-choosey=0 and we neeck to be somewhat smaller than
off f, of the noise. Multiplying that limit byHW, one ob-  (though still of the same order Jathe nonstationarity factor
tains an upper ceilind?,pper 0N the value of the response a. Note finally that a more general nonstationary time profile
function. This sudden flattening &,(t), the more realistic could be qualitatively well approximated by a succession of
response function, can be modeled algebraically in differenlinear sections such as the one above.
ways, depending on the internal dynamics of the particular If some noise is now added to this signal, say, with an rms
system considered. However, the effect of this plateau i~ B1/3, then the total input is first well below the threshold
R,(t) that we are interested in here can be captured by thB; and then well above it, with, somewhere in between, a

following simple model: brief critical time when the total input is just about the
_ threshold, as in the stationary case. The output is hence first
R (t) =min{Ryppen R(1)}. ()  essentially zero. Then it quickly grows, over the critical time,

] ] ~and reaches a saturation value where it stabilizes for the re-
We want to study the correlation of this output function majnder of the integratior{See Fig. 2a).] This saturation
R.(t) with the injected signa§(t), which should determine can pe roughly traced analytically in the behavior of E@.

whether the latter can be detected by the trigger system. Wgq (3), upon substituting foS(t) the linear formxt: If we
follow the literature]17,18| in using the zero-lag correlation gefine the normalized time

coefficient, with the modification that our signal does not

average to zerdFig. 1(a@)]. In our numerical simulations T=t/At, (7)
(Figs. 1-4, we of course correlate directly with the raw

(pulsewise responseR,(t), not with its smeared version which grows from 0 to 1 over the integration time, we find
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Because the signal is below the threshold, we hava/x in

Eqg. (7). On the other hand, we are considering the strong
nonstationary case, and aéx~1. In addition, we have, by
definition, 0< r<1. Equation(7) then implies the following
behavior of the system, which is confirmed by direct numeri-

. A . . thresholds
cal simulation in Fig. 2. Consider first the case WhB{ge, signal
is arbitrarily high. Then Eq(7) implies thatR,(7) grows +

almost linearly until it approaches its maximum HW ;) noise
at 7=1, and hence the correlation with the input signal is
quite high. This has the implication that the single-threshold
systems used so far istationary aperiodic stochastic reso-
nancg 17—-24 have also the potential to detect nonstationary
signals under certain circumstances, namely, when the pulse
firing rate can be extremely fag28].

. . FIG. 1. (a) TheN-level trigger systenthereN=5) consists of a
Howeygr, in the more generic case Wh&G,pe<HW o, barrierB; andN—1 higher thresholds equally spaced betw&gn
the realistic responsR,(7) is not so well correlated to the .4 5 highest thresholBly , chosen here to be three timBs. (b)

signal, as it is a function that flattens quickly when the totalthe geterministic input ofa) is replaced by a random looking

input crosses above the threshold. This is where multipleinpyt, obtained by adding a large amount of noise to the previous
differentiated thresholds can substantially improve the detecsypthreshold signal.

tion. Let us then mount, in parallel with the first, some addi-

tional trigger systems, all identical to the first except for theirfrequency signalwith aperiodic stochastic resonance tech-
progressively higher threshold¢Fig. 1): B;<B,<--- niques[17-24,.

<By. Finally, as might be expected from previous nondynami-

The second threshold will then saturate at a higher valueal [14-16 and aperiodic[17—24 stochastic resonance
of 7 and its output, when added to the output from the firststudies, our differentiated multithreshold system, injected
threshold, will resemble a two-step function. With the  with nonstationary aperiodic signals, clearly displays sto-
thresholds in parallel, one obtains Ahstep total response chastic resonance as weHlig. 4), although it is its potential
functionR, (7). As N increases from order 1 to order 10, the for the detectionof subthreshold signals that is of prime
R,(7) profile rapidly approaches a roughly linear shape, andmportance to us here.
one expects the correlation coefficient of E4). to improve Describing now the simulations in more detail, we turn
notably. However, a further increaselihtowards very large first to Fig. Xa), which shows theN-level trigger system
values can be expected to bring about only a marginal im¢here N=5) consisting of a barrieB; and N—1 higher
provement in the correlation, and this is in fact what is foundthresholds equally spaced betwepand a highest thresh-
numerically(Figs. 2 and 3 old By, chosen here to be 3 tim&;. Other ways of distrib-

As a short preview of our numerical simulations, we firstuting the differentiated thresholds are of course possible, but
note that we used a signal that increases almost monotonirost do not lead to qualitatively different results. The signal
cally with time (Fig. 1). Again, more arbitrary nonstationary is clearly nonstationary, and yet it remains subthreshold, i.e.,
profiles can often be divided into such guasimonotonic secundetectable in principle, throughout the integrati¢fihe
tions. Also, we purposely did not add higher-frequencytime has been normalized so that the integration runs from
structure to the signal becauéb we wanted to isolate the 7=0tor=1)
features brought about by nonstationarif}g) stochastic In Fig. 1(b), the deterministic input of Fig. (&) is re-
resonance has already been successfully demonstrated falrced by a random looking input, obtained by adding a large
(stationary aperiodic high-frequency signal|d7-24, and amount of noise to the previous subthreshold signal. The
(3) the signal that a systeig@specially a biological oneat-  noise here is a low-pass filtered, zero-mean Gaussian white
tempts to detect in the nonstationary case is often a roughoise. The input now clearly exceeds the barBgrand a
time profile, and higher-frequency components are then ofew more thresholds. When any of the thresholds is ex-
little relevance. ceeded, the system fires a pulse of standbaud otherwise

In nonstationary situations where both the overall timearbitrary heightH and(narrow width W. At any given time
profile and the higher-frequency details of the signal are im- 7, the respons®( ) is the sum of the outputs from all the
portant, one can first try to detect that roughw-frequency  thresholds exceeded at that timel.e., if B; is the highest
time profile as described here, and then filter out the lowthreshold exceeded at thenR(7) is a pulse of widthV and
frequencies and treat the residual sig(ebktationaryhigh-  heightj xXH.
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Response from 1-threshold system 2(c), for easier visual comparisdrivhen only one threshold
1 I T (that is,B;) is activated, the response is roughly a step func-
_ tion: For small values of, most of the points in Fig.(b) are
0.8 (signal: K belowB; and hence produce a zero response, while for large
I / values ofr, most of the points are abo, and produce a
N response equal toXXHW (scaled here to 1.0ne can see
/ that this one-step response function is only marginally cor-
/ related to the underlying signal, which translates into a low
2 value of the correlation coefficient fdd=1 in Fig. 3.
o From Fig. Zb) one can see that wheM, the number of
time t thresholds, is greater tharf =10 in Fig. 2b)], and each of
the exceeded thresholdkere, there are folrcontributes a
different step function to the response. Hence, the latter takes
the aspect of a multistep functigagain rescaled here as in
Fig. 2@] that follows roughly the nonstationary profile of
the signal. There is a clear improvement of the correlation
Response from 10-threshold system between the response and the signal, confirming our earlier
it e heuristic argument which used the smeared approximation

:» . A R(7) to the respons&(7).

0.8 (signal: ---) / Because the quasistep functions due to the individual
SN S thresholds are partially stochastic, they also contribute some
N broken lines to the total response, as can be seen in Ras. 2
and 2b). When, as in Fig. &), the number of thresholds

/ —— o — = becomes largeN=100 in Fig. Zc)], the (now very short
steps and the stochastic broken lines become comparable in
) length, resulting in a scattered response function. As a con-
i time t sequence, the correlation between signal and response is not
' 0.2 0.4 0.6 0.8 B much stronger than in the calle- 10, and hence the leveling

off of the correlation coefficient as a function Nfin Fig. 3.

Figure 3a) shows the correlation coefficient of E(R),
which is the value of the normalized correlation function
(between the response and the sigral zero lag. The in-
crease of the correlation with the number of thresholds levels
off at N~ 10, as was foreseen in the above discussion of Fig.
o~ S 2. (The first three values dfl produce the same correlation
0.8 (signal: ---} ;o because, for these small values, the space between thresholds
- / is large enough that onlB, is exceeded.Thus, a number of
0.6 SN / - order of magnitude 10 of differentiated, individual triggers,
LT S mounted in paralle{summed outpujsis singled out for the
0.4 ! . optimal detection of a nonstationary signal.

. - Figure 3b) confirms that the main feature of Fig(a3,

0.2 CooN S . i.e., the plateau of the correlation coefficient as a function of

- the numbem of thresholds, is robust in the largédimit. In

- time t both Figs. 8a) and 3b), the calculations were performed
using a noise with rms- equal to half the height of the first
barrierB;.

FIG. 2. (@) The subthreshold input signal of Fig(al and the Finally, Fig. 4 shows the correlation coefficie@tof Eq.
responseR(7) of the trigger system, both rescaled here andbin  (4) as a function ofo, the rms of the noise, divided by the
and(c) below, for easier visual comparison. When only one thresh{owest threshold,. The system clearly displays stochastic
old (that is,B,) is activated, the response is roughly a step function.resonance. When there is more than one threshsid 1),

(b) When N, the number of thresholds, is greater thal(lhﬂ?l’eN the decrease df becomes S||ght|y Sharper whenexceeds
=10), the response takes the aspect of a multistep funigain 5 vajue of order 1. This is a consequence of having a fixed
rgscaled hgre as i@ ] that follows roughly the nonstationary pro- highest threshold, namel@, + 2 B, (see Fig. 1: When the
file of the signal.(c) When the number of thrgsholds bec_omes Iargenoise is large enough that its tip starts exceeding the highest
s o g & ey et eeny iesholdwhih occurs when—B,). e whole sysem
: " starts behaving more like a one-threshold system and hence
the sharper decrease @ (compare with theN=1 curve)

Figure 2a) shows the subthreshold input signdhin Note that forN of order 10 or larger, all curves are nearly
dashed curveof Fig. 1(a@ and the respons®(r) of the identical to theN=1000 curve shown in Fig. 4. So, although
trigger system[Both are rescaled here and in Figgb)2and  there is a clear broadening of the stochastic resonance curves

Response from 100-threshold system

0.2 0.4 0.6 0.8
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FIG. 4. The correlation coefficiel@@ of Eq. (4) as a function of

C o, the rms of the noise, in units of the lowest threshBld The
1 system clearly displays stochastic resona8ee the text for more
correlation e e e s e e e e on these specific profilgs.
*
coefficient 0.6 . primary afferent neurorffrom the spiral ganglionhas its
o lowest threshold to a particular frequency of sound, called its
“characteristic frequency.” Its threshold is increasingly
0 higher for sound frequencies farther from the characteristic
loa (N frequency. When the system is stimulated by a weak pure
o5 1 152 as 5 legN) tone of a given frequency, only neurons with a characteristic
log, ( number of thresholds) frequency near the stimulating frequency, and thus having

low thresholds for those sounds, will fire. As the tone in-
creases in amplitude, the first-firing neurons will quickly
FIG. 3. (a) The correlation coefficient of Eq2), which is the  saturate but other neurons, whose thresholds for the stimu-
value of the normalized correlation functidbetween the response lating frequency are higher because their characteristic fre-
and the signalat zero lag. The increase of the correlation with the quencies are farther from it, will begin to fire as their thresh-
number of thresholds levels off &~ 10, as was foreseen in the olds are exceeded. In this way, the number of neurons firing
text. Thus, a number of order of magnitude 10 of differentiated,will track the intensity of the pure tone. If these neurons
individual triggers, mounted in parallel is singled out for the opti- converged upon an integrator neuron whose firing depended
mal detection of a nonstationary signdi) The result of(a) above;  directly on the firing of several spiral ganglion neurons with
i.e., the plateau of the correlation coefficient as a function of thegifferent characteristic frequencies, the integrator would fire
numberN of thresholds, is robust in the largedimit. proportionately to the signal amplitude. This system would
give a similar response for a subthreshold signal that was
(and hence less fine-tuning of the noise is necessary to deteminplified above the thresholds of the auditory receptors by
the weak signalfor large values ofN, this system is not as environmental or internal noise, i.e., in the stochastic reso-
free of fine-tuning as thénondifferentiategl multithreshold  nance situation. Such circuits in the auditory system have
system described in théstationary aperiodic stochastic been argued to be responsible for the primary coding of au-
resonance literaturg20,25,2§ referred to earlier in the text. ditory signal intensitf29] and for the integration of intensity
In all, our study suggests that stochastic resonance miglimformation from very brief auditory signa[80].
be exploited for the detection of even strongly nonstationary Our simulations suggested that only a relatively small
subthreshold signals. We find that a differentiated multiplenumber of cooperative trigger mechaniske$ order 10 in
threshold system might, in such cases, improve on the pepur study might be necessary to achieve near-optimal detec-
formance of single-threshold systems. But this is by nation of subthreshold signals, at least nonstationary ones. This
means a universal conclusion: we find numerically theresult is reminiscent of the fact that some key components of
amount of improvement to be strongly case dependemt  certain biological systems consist of a fixed number of re-
depending on the shape of the signal, the noise characteriseptors mounted in cooperative neural networks similar to
tics, etc). The results reported here are for cases where theur differentiated multithreshold system. For example, under
multithreshold scheme presents a clear advantage. A thooptimal conditions a minimum of six photons must each
ough investigation of the comparative performance of differ-stimulate a different rod in the retina of the eye, the signals
entiated multithreshold systems throughout parameter spadmm the six rods being integrated in the response of a single
is underway[27]. Also, the capacity ofmodified single- retinal ganglion cel[31]. This is not a stochastic resonance
threshold systems to detect realistic nonstationary signals hagtuation, since the rods are roughly identical near-ideal de-
also been investigated recenf38]. tectors responding to single photons, and Poisson noise from
One example of a differentiated multiple-threshold systenthe source only degrades that function. However, it is inter-
that might function similarly to our theoretical system is the esting that evolution has developed such a sparse network
auditory sensory system in mammals. In this system, eacthat can be so exquisitely sensitive to environmental signals.
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Perhaps there is a more general principle of diminishing reehastic resonance systems, injected with a variety of realistic
turns operating that keeps such cooperative networks smagignals, must be conducted before such an evolutionary role
even though they are of diverse function. We speculate thaf stochastic resonance is confirmed.

this principle might be important in the functioning of sto- | am grateful to to L.M. Ward for much information
chastic resonance in some biological systems and that ev@hout neural processes and to P.E. Greenwood for reviewing
lution may have exploited it to enhance the detection of ahe paper and making several suggestions. | am indebted to
wide class of fitness-relevant environmental signals, in parw.G. Unruh for bringing the phenomenon of stochastic reso-
ticular nonstationary signals as described here. nance to my attention and to B. Bergersen for providing

Clearly, however, much more detailed studies of biologi-previous literature on the topic. | am grateful for the exten-
cally (or electronically plausible multiple-component, sto- sive logistical support.
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